Новое изображение от коллаборации Event Horizon Telescope (EHT), в которую входят ученые из Центра астрофизики | Гарвардский и Смитсоновский институт (CfA) обнаружил сильные и организованные магнитные поля, спиралевидные от края сверхмассивной черной дыры Стрелец А* (Sgr A*).
Этот новый вид монстра, скрывающегося в сердце галактики Млечный Путь, впервые увиденный в поляризованном свете, выявил структуру магнитного поля, поразительно похожую на структуру магнитного поля черной дыры в центре галактики M87, что позволяет предположить, что сильное магнитное поле поля могут быть общими для всех черных дыр. Это сходство также намекает на наличие скрытой струи у Стрельца А*.
Результаты были опубликованы в The Astrophysical Journal Letters.
В 2022 году ученые представили первое изображение Sgr A*, которое находится примерно в 27 000 световых годах от Земли, показав, что, хотя сверхмассивная черная дыра Млечного Пути более чем в тысячу раз меньше и менее массивна, чем M87, она выглядит удивительно похожей. .
Это заставило ученых задуматься, есть ли у этих двоих общие черты, помимо внешности. Чтобы выяснить это, команда решила изучить Sgr A* в поляризованном свете. Предыдущие исследования света вокруг M87* показали, что магнитные поля вокруг гиганта черной дыры позволяют ему запускать мощные струи материала обратно в окружающую среду. Основываясь на этой работе, новые изображения показали, что то же самое может быть справедливо и для Sgr A*.
«То, что мы сейчас видим, — это наличие сильных, искривленных и организованных магнитных полей вблизи черной дыры в центре галактики Млечный Путь», — сказала Сара Иссаун, научный сотрудник программы Эйнштейна программы стипендий Хаббла НАСА, Смитсоновская астрофизическая обсерватория (SAO). ) астрофизик и соруководитель проекта.
«Наряду с тем, что Sgr A* имеет поразительно похожую структуру поляризации на ту, что наблюдается в гораздо большей и мощной черной дыре M87*, мы узнали, что сильные и упорядоченные магнитные поля имеют решающее значение для того, как черные дыры взаимодействуют с газом и материей вокруг. их.»
Свет — это колеблющаяся или движущаяся электромагнитная волна, которая позволяет нам видеть объекты. Иногда свет колеблется в определенной ориентации, и мы называем это «поляризованным». Хотя нас окружает поляризованный свет, для человеческого глаза он неотличим от «нормального» света.
В плазме вокруг этих черных дыр частицы, вращающиеся вокруг силовых линий магнитного поля, создают картину поляризации, перпендикулярную полю. Это позволяет астрономам увидеть во все более ярких деталях то, что происходит в областях черных дыр, и составить карту линий их магнитного поля.
«Изображая поляризованный свет горячего светящегося газа вблизи черных дыр, мы напрямую делаем выводы о структуре и силе магнитных полей, которые пронизывают поток газа и материи, которую черная дыра питает и выбрасывает», — сказал научный сотрудник Гарвардской инициативы черных дыр и соруководитель проекта Анджело Рикарте. «Поляризованный свет учит нас гораздо больше об астрофизике, свойствах газа и механизмах, которые происходят при питании черной дыры».
Но визуализировать черные дыры в поляризованном свете не так просто, как надеть поляризационные солнцезащитные очки, и это особенно верно в отношении Стрельца А*, который меняется так быстро, что не сидит на месте для фотографий. Для получения изображения сверхмассивной черной дыры требуются сложные инструменты, превосходящие те, которые ранее использовались для захвата M87*, гораздо более устойчивой цели.
Постдокторант CfA и астрофизик SAO Пол Тиде сказал: «Удивительно, что нам вообще удалось сделать поляризованное изображение Стрельца А*. Для создания первого изображения потребовались месяцы тщательного анализа, чтобы понять его динамическую природу и раскрыть его среднюю структуру».
«Создание поляризованного изображения усложняет задачу динамики магнитных полей вокруг черной дыры. Наши модели часто предсказывали сильно турбулентные магнитные поля, что чрезвычайно затрудняло построение поляризованного изображения. К счастью, наша черная дыра гораздо спокойнее, поэтому первое возможное изображение».
Ученые рады получить изображения обеих сверхмассивных черных дыр в поляризованном свете, потому что эти изображения и данные, которые они сопровождают, предоставляют новые способы сравнения и сопоставления черных дыр разных размеров и масс. По мере совершенствования технологий изображения, вероятно, откроют еще больше тайн черных дыр, их сходств и различий.
Мичи Баубёк, постдокторант из Университета Иллинойса в Урбане-Шампейне, сказал: «M87* и Sgr A* отличаются в нескольких важных отношениях: M87* намного больше, и он втягивает материю из окружающей среды с гораздо большей скоростью. …Так что можно было ожидать, что магнитные поля тоже будут выглядеть совсем по-разному. Но в данном случае они оказались весьма схожими, а это может означать, что эта структура является общей для всех черных дыр».
«Лучшее понимание магнитных полей вблизи черных дыр помогает нам ответить на несколько открытых вопросов — от того, как формируются и запускаются струи, до того, какую мощность дают яркие вспышки, которые мы видим в инфракрасном и рентгеновском свете».
EHT провел несколько наблюдений с 2017 года и планирует снова наблюдать Sgr A* в апреле 2024 года. Каждый год изображения улучшаются по мере того, как EHT включает в себя новые телескопы, более широкую полосу пропускания и новые частоты наблюдений. Запланированные на следующее десятилетие расширения позволят получить высококачественные видеоролики о Стрельца А*, могут обнаружить скрытый джет и позволят астрономам наблюдать аналогичные особенности поляризации в других черных дырах. Между тем, распространение EHT в космос обеспечит более четкие изображения черных дыр, чем когда-либо прежде.
CfA возглавляет несколько крупных инициатив по резкому расширению EHT в течение следующего десятилетия. Проект EHT следующего поколения (ngEHT) проводит революционную модернизацию EHT с целью подключить к сети несколько новых радиоантенн, обеспечить возможность одновременных многоцветных наблюдений и повысить общую чувствительность массива.
Расширение ngEHT позволит массиву снимать в реальном времени фильмы о сверхмассивных черных дырах в масштабах горизонта событий. Эти фильмы раскроют подробную структуру и динамику вблизи горизонта событий, сосредоточив внимание на гравитационных особенностях «сильного поля», предсказанных Общей теорией относительности, а также на взаимодействии аккреции и релятивистских запусков реактивных самолетов, которые формируют крупномасштабные структуры во Вселенной.
Между тем, концепция миссии Black Hole Explorer (BHEX) расширит EHT в космос, создав самые четкие изображения в истории астрономии. BHEX позволит обнаружить и визуализировать «фотонное кольцо» — острое кольцо, образованное сильно линзированным излучением вокруг черных дыр.
Свойства черной дыры отпечатываются на размере и форме фотонного кольца, раскрывая массы и вращения десятков черных дыр, в свою очередь показывая, как эти странные объекты растут и взаимодействуют со своими родительскими галактиками.
Информация от: Гарвард-Смитсоновским центром астрофизики.